Optimization of a Dual-Energy Contrast-Enhanced Technique for a Photon Counting Digital Breast Tomosynthesis System

نویسندگان

  • Ann-Katherine Carton
  • Christer Ullberg
  • Karin Lindman
  • Tom Francke
  • Andrew D. A. Maidment
چکیده

PURPOSE Dual-energy (DE) iodine contrast-enhanced x-ray imaging of the breast has been shown to identify cancers that would otherwise be mammographically occult. In this article, theoretical modeling was performed to obtain optimally enhanced iodine images for a photon-counting digital breast tomosynthesis (DBT) system using a DE acquisition technique. METHODS In the system examined, the breast is scanned with a multislit prepatient collimator aligned with a multidetector camera. Each detector collects a projection image at a unique angle during the scan. Low-energy (LE) and high-energy (HE) projection images are acquired simultaneously in a single scan by covering alternate collimator slits with Sn and Cu filters, respectively. Sn filters ranging from 0.08 to 0.22 mm thickness and Cu filters from 0.11 to 0.27 mm thickness were investigated. A tube voltage of 49 kV was selected. Tomographic images, hereafter referred to as DBT images, were reconstructed using a shift-and-add algorithm. Iodine-enhanced DBT images were acquired by performing a weighted logarithmic subtraction of the HE and LE DBT images, The DE technique was evaluated for 20-80 mm thick breasts. Weighting factors, w(t) that optimally cancel breast tissue were computed. Signal-difference-to-noise ratios (SDNRs) between iodine-enhanced and nonenhanced breast tissue normalized to the square root of the mean glandular dose (MGD) were computed as a function of the fraction of the MGD allocated to the HE images. Peak SDNR/ mean square root of MGD and optimal dose allocations were identified. SDNR/ mean square root of MGD and dose allocations were computed for several practical feasible system configurations (i.e., determined by the number of collimator slits covered by Sn and Cu). A practicalsystem configuration an d Sn-Cu filterpair that accounts for the trade-off between SDNR, tube-output, and MGD were selected. RESULTS w(t) depends on the Sn-Cu filter combination used, as well as on the breast thickness; to optimally cancel 0% with 50% glandular breast tissue, w(t) values were found to range from 0.46 to 0.72 for all breast thicknesses and Sn-Cu filter pairs studied. The optimal w(t) values needed to cancel all possible breast tissue glandularites vary by less than 1% for 20 mm thick breasts and 18% for 80 mm breasts. The system configuration where one collimator slit covered by Sn is alternated with two collimator slits covered by Cu delivers SDNR/ mean square root of MGD nearest to the peak value. A reasonable compromise is a 0.16 mm Sn-0.23 mm Cu filter pair, resulting in SDNR values between 1.64 and 0.61 and MGD between 0.70 and 0.53 mGy for 20-80 mm thick breasts at the maximum tube current. CONCLUSIONS A DE acquisition technique for a photon-counting DBT imaging system has been developed and optimized.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dual-energy subtraction for contrast-enhanced digital breast tomosynthesis

We have developed a dual-energy subtraction technique for contrast-enhanced breast tomosynthesis. The imaging system consists of 48 photon-counting linear detectors which are precisely aligned with the focal spot of the x-ray source. The x-ray source and the digital detectors are translated across the breast in a continuous linear motion; each linear detector collects an image at a distinct ang...

متن کامل

Optimization of a dual-energy contrast-enhanced technique for a photon-counting digital breast tomosynthesis system: II. An experimental validation.

PURPOSE Previously, the authors developed a dual-energy (DE) acquisition technique for a photon-counting digital breast tomosynthesis (DBT) imaging system. Low-energy (LE) and high-energy (HE) images are acquired in a single scan by covering alternate slits of a multislit prepatient collimator with Sn and Cu, respectively. A theoretical model was used to optimize the technique. In this article,...

متن کامل

2D and 3D registration methods for dual-energy contrast-enhanced digital breast tomosynthesis

Contrast-enhanced digital breast tomosynthesis (CE-DBT) uses an iodinated contrast agent to image the threedimensional breast vasculature. The University of Pennsylvania is conducting a CE-DBT clinical study in patients with known breast cancers. The breast is compressed continuously and imaged at four time points (1 pre-contrast; 3 postcontrast). A hybrid subtraction scheme is proposed. First,...

متن کامل

Dual-energy contrast-enhanced digital breast tomosynthesis--a feasibility study.

Contrast-enhanced digital breast tomosynthesis (CE-DBT) is a novel modality for imaging breast lesion morphology and vascularity. The purpose of this study is to assess the feasibility of dual-energy subtraction as a technique for CE-DBT (a temporal subtraction CE-DBT technique has been described previously). As CE-DBT evolves, exploration of alternative image acquisition techniques will contri...

متن کامل

Segmentation methods for breast vasculature in dual-energy contrast-enhanced digital breast tomosynthesis

Dual-energy contrast-enhanced digital breast tomosynthesis (DE CE-DBT) uses an iodinated contrast agent to image the three-dimensional breast vasculature. The University of Pennsylvania has an ongoing DE CE-DBT clinical study in patients with known breast cancers. The breast is compressed continuously and imaged at four time points (1 pre-contrast; 3 post-contrast). DE images are obtained by a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Medical physics

دوره 37 11  شماره 

صفحات  -

تاریخ انتشار 2008